Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Phytother Res ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2320927

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that poses a serious threat to global public health. In an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike (S) protein to engage with angiotensin-converting enzyme 2 (ACE2) in host cells. Chinese herbal medicines and their active components exhibit antiviral activity, with luteolin being a flavonoid that can significantly inhibit SARS-CoV infection. However, whether it can block the interaction between the S-protein RBD of SARS-CoV-2 and ACE2 has not yet been elucidated. Here, we investigated the effects of luteolin on the binding of the S-protein RBD to ACE2. By employing a competitive binding assay in vitro, we found that luteolin significantly blocked the binding of S-protein RBD to ACE2 with IC50 values of 0.61 mM, which was confirmed by the neutralized infection with SARS-CoV-2 pseudovirus in vivo. A surface plasmon resonance-based competition assay revealed that luteolin significantly affects the binding of the S-protein RBD to the ACE2 receptor. Molecular docking was performed to predict the binding sites of luteolin to the S-protein RBD-ACE2 complex. The active binding sites were defined based on published literature, and we found that luteolin might interfere with the mixture at residues including LYS353, ASP30, and TYR83 in the cellular ACE2 receptor and GLY496, GLN498, TYR505, LEU455, GLN493, and GLU484 in the S-protein RBD. These residues may together form attractive charges and destroy the stable interaction of S-protein RBD-ACE2. Luteolin also inhibits SARS-CoV-2 spike protein-induced platelet spreading, thereby inhibiting the binding of the spike protein to ACE2. Our results are the first to provide evidence that luteolin is an anti-SARS-CoV-2 agent associated with interference between viral S-protein RBD-ACE2 interactions.

2.
Anal Chem ; 94(50): 17541-17550, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2150968

RESUMEN

The development of an effective method for identifying severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) via direct viral protein detection is significant but challenging in combatting the COVID-19 epidemic. As a promising approach for direct detection, viral protein detection using surface-enhanced Raman scattering (SERS) is limited by the larger viral protein size compared to the effective electromagnetic field (E-field) range because only the analyte remaining within the E-field can achieve high detection sensitivity. In this study, we designed and fabricated a novel long-range SERS (LR-SERS) substrate with an Au nanoplate film/MgF2/Au mirror/glass configuration to boost the LR-SERS resulting from the extended E-field. On applying the LR-SERS to detect the SARS-CoV-2 spike protein (S protein), reagent-free detection achieved a low detection limit of 9.8 × 10-11 g mL-1 and clear discrimination from the SARS-CoV S protein. The developed technique also allows testing of the S protein in saliva with 98% sensitivity and 100% specificity.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , SARS-CoV-2 , Oro , Glicoproteína de la Espiga del Coronavirus , Espectrometría Raman/métodos
3.
Nature ; 588(7839): 670-675, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-943910

RESUMEN

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Asunto(s)
COVID-19/virología , Pulmón/citología , Modelos Biológicos , Organoides/citología , Organoides/virología , SARS-CoV-2/fisiología , Técnicas de Cultivo de Tejidos , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , COVID-19/metabolismo , COVID-19/patología , Diferenciación Celular , División Celular , Células Clonales/citología , Células Clonales/metabolismo , Células Clonales/virología , Humanos , Técnicas In Vitro , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Integrina alfa6/análisis , Integrina beta4/análisis , Queratina-5/análisis , Organoides/metabolismo , Neumonía Viral/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2/crecimiento & desarrollo , Análisis de la Célula Individual , Receptor de TWEAK/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA